Vordruckregler, Industrie - Ausführung Initial-Pressure-Controller, Industry - design

Inhaltsverzeichnis Index

Ventil Valve	Verwendung Use	Medium	DN mm	P ₁ bar
Typ 80	Vordruckregler, federbelastet Initial Pressure Controller, springloaded mit Gewindeanschluss / with screwed ends	D/G/F	8 - 65 1/4 - 2½	0,25 - 62,0
Typ 81	Vordruckregler, federbelastet Initial Pressure Controller, springloaded mit Flanschanschluss, Sonderflansche / with flanged ends, special flanges	D/G/F	10 - 80 1/2 - 3	0,25 - 60,0
Typ 84	Vordruckregler, federbelastet Initial Pressure Controller, springloaded Gewindeanschluss, Membranventil / with screwed ends, diaphragm valve	D/G/F	8 - 65 1/4 - 2½	0,004 - 0,98
Typ 85	Vordruckregler, federbelastet Initial Pressure Controller, springloaded mit Flanschen, Sonderflanschen, Membranventil / with flanges, special flanges, diaphragm valve	D/G/F	10 - 80 1/2 - 3	0,004 - 0,98

Medium

- Dämpfe / steam	- D
- Gase / gases	- G
- Flüssigkeiten / liquids	- F -
Vordruck / inlot proceuro	D₄

Robinex AG Bernstrasse 36 4663 Aarburg Tel: 062 787 70 00 Fax: 062 787 70 01

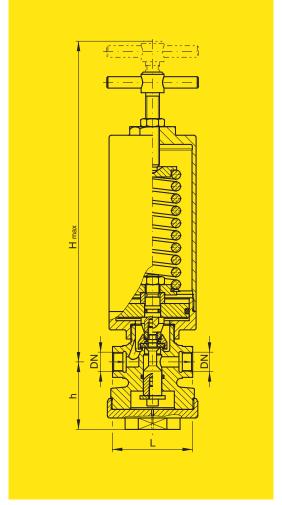
für Dämpfe, Gase und Flüssigkeiten, großer Regelbereich for steam, gases and liquids, expanded range of adjustment

Typ 80

Typ 80.2: Wst. / Material 1.4301 Typ 80.2: Wst. / Material 1.4571

Industrie - Ausführung / Industry - design

Gegendruckunabhängig / Back pressure independent


Vordruckregler mit Schutzkappe auf Anfrage Valve with top cap on request

Verwendung / Use

Betriebstemperatur / operating temperature

Kegel weich dichtend / disc soft seated

siehe techn. Anhang: KWD-1 / see techn. appendix: KWD-1

BG / Size 0

BG	Eintritt Inlet				stritt tlet	Baumaße Dimensions				Gewicht Weight
Size	DN		Vordruckbereich** P1 initial pressure range** P1 minimal maximal		DN		L H _{max} H ₃			
	[mm]	G 1)	[bar(g)]	[mm]	G ¹⁾	[mm]	[mm]	[mm]	[mm]	[kg]
0	8* 10 15*	1/4* 3/8 1/2*	0,35 / 62,0	8* 10 15*	1/4* 3/8 1/2*	70	272	267	59	2,1
1	15 20 25*	1/2 3/4 1*	0,35 / 60,0	15 20 25*	1/2 3/4 1*	90 90 135	282	262	67	4,1
П	25 32 40*	1 1¼ 1½*	0,25 / 47,0	25 32 40*	1 1½ 1½*	105 105 155	288	268	75	5,8
III ²⁾	40 50 65*	1½ 2 2½*	0,25 / 50,0	40 50 65*	1½ 2 2½*	145 145 210	335	315	90	10,3
III B ²⁾	50 65	2 2½*	0,25 / 19,5	50 65	2 2½*	220 220	540	520	112	

Typ 80

für Dämpfe, Gase und Flüssigkeiten, großer Regelbereich for steam, gases and liquids, expanded range of adjustment

Tabelle: Einstellbereiche des Vordruckes P1

Table: spring ranges for initial pressure P1

BG / Size	0	ı	Ш	III	III B
Eintr./Austr.	DN 8, DN 10, DN 15	DN 15, DN 20, DN 25	DN 25, DN 32, DN 40	DN 40, DN 50, DN 65	DN 50, DN 65
Inlet/Outlet	1/4, 3/8, 1/2	1/2, 3/4, 1	1, 1¼, 1½	1½, 2, 2½	2, 21/2
Kolbenplatte piston plate [mm]	, 0.0,2	, , , , , ,	Einstellbereich spring range [bar(g)]	.,2, =, =,2	
					0,25 - 0,54
					0,45 - 0,90
Ø 119					0,70 - 1,37
					1,02 - 2,04
					1,65 - 3,30
					2,40 - 4,80
				0,25 - 0,55	1,10 - 2,20
Ø 99				0,43 - 0,85	1,65 - 3,30
				0,68 - 1,35	2,65 - 5,30
				1,20 - 2,40	3,90 - 7,70
				1,40 - 2,70	
			0,25 - 0,55	0.41 - 0.82	2,70 - 5,40
			0,46 - 0,92	0,65 - 1,27	4,30 - 8,60
Ø 84			0,72 - 1,44	1,00 - 2,00	6,30 - 12,60
~ 01			1,10 - 2,20	1,80 - 3,50	7,40 - 14,70
			1,60 - 3,10	2,00 - 4,00	9,80 - 19,50
			2,00 - 4,00	2,00	0,00
	0,35 - 0,59	0,35 - 0,57	1,40 - 2,70	1,40 - 2,70	
	0,50 - 1,05	0,50 - 1,00	2,00 - 4,10	2,20 - 4,30	
Ø 64	0,90 - 1,72	0,80 - 1,60	2,90 - 5,80	3,70 - 7,40	
	1,40 - 2,70	1,30 - 2,60	3,70 - 7,40	4,30 - 8,50	
	2,10 - 4,18	2,00 - 4,00			
	3,00 - 6,00	2,90 - 5,70			
	2,50 - 5,00	2,40 - 4,80	2,80 - 5,60	4,10 - 8,20	
Ø 48	3,90 - 7,80	3,60 - 7,50	4,40 - 8,70	6,60 - 13,10	
	5,50 - 11,20	5,40 - 10,70	6,10 - 12,20	11,50 - 23,00	
	7,20 - 14,40	6,90 - 13,70	7,80 - 15,50	13,00 - 26,00	
				17,00 - 33,00	
				25,00 - 50,00	
	4,40 - 8,70	4,20 - 8,40	6,00 - 12,00		
	6,80 - 13,50	6,50 - 13,00	10,00 - 18,50		
Ø 38	9,70 - 19,20	9,20 - 18,40	13,00 - 26,00		
	12,40 - 24,80	12,00 - 23,70	17,00 - 33,00		
			22,00 - 44,00		
	44.00 01.00	40.50 01.00	24,00 - 47,00		
	11,00 - 21,90	10,50 - 21,00			
Ø 07	17,00 - 34,00	17,00 - 33,00			
Ø 27	24,00 - 48,00	23,00 - 46,00			
	31,00 - 62,00	30,00 - 60,00			
		40,00 - 80,00 *			
		48,00 - 95,00 *			

größere Vordruckbereiche auf Anfrage / expanded initial pressure range on request

* nur für DN 15 / only DN 15

für Dämpfe, Gase und Flüssigkeiten, großer Regelbereich for steam, gases and liquids, expanded range of adjustment

Typ 80

Massenstromtabelle für Sattdampf

zur Bestimmung der Größe von Vordruckreglern

Bau	ıgröße	0		I	I	I	I	II	II	ΙΒ
Ner	nweite	10	15	20	25	32	40	50	50	65
1401	iiiwoito	3/8	1/2	3/4	1	11⁄4	1½	2	2	2½
Überdru	ck p _ü [bar(g)]					kį	g/h			
	0,15	4	10	17	27	40	83	120	120	180
	0,2	5	11	19	31	46	99	145	145	210
	0,3	6	13	23	35	55	112	160	160	240
	0,5	7	16	28	46	70	140	200	200	300
	0,75	9	20	35	57	85	175	250	250	370
	1	11	25	42	68	100	210	300	300	450
	1,5	14	32	55	90	140	280	400	400	590
	2	17	40	70	115	170	350	520	520	750
O	2,5	21	47	84	135	200	400	600	600	880
。00:	3	24	55	99	155	240	480	700	700	1020
t _{max} 200 °C	4	31	70	123	195	300	600	890	890	1300
t	5	38	85	150	245	360	740	1080	1080	1600
	6	46	104	185	300	450	900	1340	1340	1950
	7	54	122	225	350	540	1100	1600	1600	2400
	8	62	140	250	400	600	1250	1800	1800	2700
	9	71	160	280	450	680	1380	2000	2000	2900
	10	80	180	320	500	750	1500	2300	2300	3300
	12	98	220	380	610	900	1850	2700	2700	4000
	14	115	260	450	720	1050	2300	3100	3100	4700

- a) Zur Bestimmung der Ventilgröße laut Tabelle ist der Vordruck maßgebend.
 Den Tabellenwerten liegen die üblichen Rohrleitungsgeschwindigkeiten zugrunde.
- b) Die unter a) ermittelte Ventilgröße kann um eine Nennweite kleiner gewählt werden, wenn beachtet wird, dass der Rohrleitungsdurchmesser am Ventilaustritt um mindestens eine Nennweite vergrößert wird.

Für kleine Druckverhältnisse gilt:

absoluter Vordruck p [bar]
$$\geq 0.7 \Rightarrow$$
 Korrekturfaktor = 1,25 $\geq 0.8 \Rightarrow$ Korrekturfaktor = 1,60 $\geq 0.9 \Rightarrow$ Korrekturfaktor = 2,25 $m_D = m_D^1 \circ f$

Der gefundene Korrekturfaktor muss auf Grund der geringeren Strömungsgeschwindigkeit mit dem vorgegebenen Massenstrom multipliziert werden. Mit Hilfe des errechneten Wertes kann nun ein Ventil gemäß Tabelle ermittelt werden.

Bei kleineren Druckverhältnissen als 0,7 wird kein Korrekturfaktor eingesetzt.

für Heißdampf gilt:

$$\dot{m}_{\rm D} = \frac{V_{\rm H}}{V_{\rm S}} \cdot \dot{m}_{\rm D}^1 \cdot f$$

Dichtungen für Dampf:

P1 < 4 [bar(g)] (<150°C): Kegeldichtung PTFE Dichtungsringe EPDM

P₁ < 15 [bar(g)] (<200°C): Kegeldichtung PTFE Dichtungsringe AF 100

P₁ > 15 [bar(g)] (>200°C): auf Anfrage

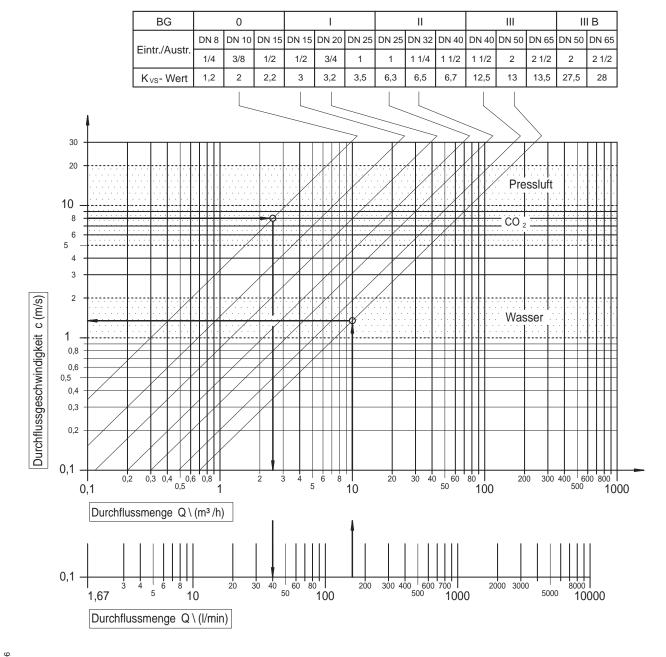
 * V $_{\rm H}$: spez. Volumen des Heißdampfes

* V _S: spez. Volumen des Sattdampfes

f : Korrekturfaktor

 $\mathring{m}_{\rm D}^1$: gegebener Massenstrom

 $\dot{m}_{\rm D}$: sich ergebender Wert des Massenstromes mit dem die Tabelle genutzt werden kann

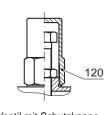

* siehe VDI-Wasserdampftafel

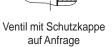
Typ 80

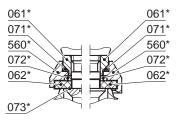
für Dämpfe, Gase und Flüssigkeiten, großer Regelbereich for steam, gases and liquids, expanded range of adjustment

Durchsatzdiagramm für Vordruckregler (gasförmige Medien, Flüssigkeiten)

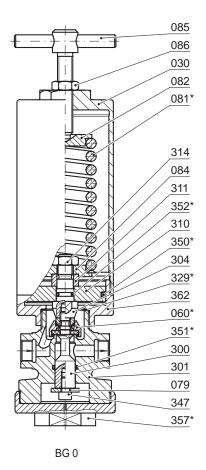
- a) Die entsprechende Ventilgröße ist mit Hilfe der üblichen Rohrleitungsgeschwindigkeiten des Mediums aus dem Diagramm zu ermitteln.
- b) Die unter a) gefundene Ventilgröße kann bei gasförmigen Medien um eine Nennweite kleiner gewählt werden, wenn beachtet wird, dass der Rohrleitungsdurchmesser am Ventilaustritt um mindestens eine Nennweite vergrößert wird.




Typ 80


für Dämpfe, Gase und Flüssigkeiten, großer Regelbereich for steam, gases and liquids, expanded range of adjustment

Typ 80.2: Wst. / Material 1.4301 Typ 80.2: Wst. / Material 1.4571

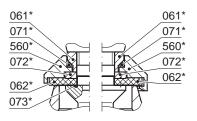

G 1/4, 3/8, 1/2

Kegel komplett, Pos. 060* Thermoplast dichtend Elastomer dichtend

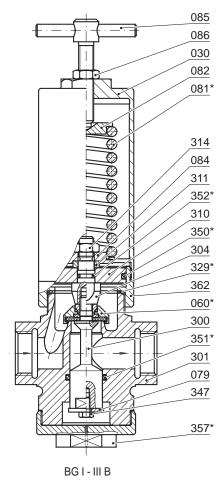
Pos.	Bezeichnung	Werks	stoff	Pos.	Bezeichnung	Werk	stoff
301 030 060* 560* 061* 062* 071* 072* 073* 079 081* 082 084 085 086 120	1 VDR-Körper 1 Federhaube 1 Kegel komplett 1 Kegel, Rohling 1 Druckstück 1 Kegeldichtung 1 O-Ring 1 Klemmscheibe 1 O-Ring 1 Hubbegrenzung 1 Feder 1 Federteller, oben 1 Federteller, unten 1 Druckschraube 1 Gegenmutter 1 Kappe	1.4301 1.4301 1.4571 1.4571 siehe techn. Ar FPM 1) 1.4571 FPM 1) 1.4571 1.4310 1.4305 1.4305 1.4305 1.4305 A2 1.4571	1.4571 ¹⁾ 1.4301 1.4571 1.4571 1.4571 1.4571 1.4571 1.4571 1.4310 1.4305 1.4305 1.4305 A2 1.4571	300 304 310 311 314 329* 347 350* 351* 352* 357 362	1 Kolben 1 Vordruckkolben 1 Kolbenplatte 1 Distanzstück 1 Gegenmutter 1 O-Ring 1 Schraube 1 O-Ring 1 O-Ring 1 O-Ring 1 Verschlusskappe 1 Adapter	1.4571 1.4571 1.4571 1.4305 A4 FPM ¹⁾ A4 FPM ¹⁾ FPM ¹⁾ 1.4571	1.4571 1.4571 1.4571 1.4305 A4 FPM ¹⁾ A4 FPM ¹⁾ FPM ¹⁾ 1.4571

^{*} Ersatz- bzw. Verschleißteile

¹⁾ andere Werkstoffe auf Anfrage


Typ 80

für Dämpfe, Gase und Flüssigkeiten, großer Regelbereich for steam, gases and liquids, expanded range of adjustment


Typ 80.2: Wst. / Material 1.4301 Typ 80.2: Wst. / Material 1.4571

G 1/2, 3/4, 1, 11/4, 11/2, 2, 21/2

Kegel komplett, Pos. 060*
Thermoplast dichtend Elastomer dichtend

Pos.	Bezeichnung	Werk	stoff	Pos.	Bezeichnung	Werk	stoff
301 030 060* 560* 061* 062* 071* 072* 073* 079 081* 082 084 085 086 120	1 VDR-Körper 1 Federhaube 1 Kegel komplett 1 Kegel, Rohling 1 Druckstück 1 Kegeldichtung 1 O-Ring 1 Klemmscheibe 1 O-Ring 1 Hubbegrenzung 1 Feder 1 Federteller, oben 1 Federteller, unten 1 Druckschraube 1 Gegenmutter 1 Kappe	1.4301 1.4301 1.4571 1.4571 siehe techn. A FPM ¹⁾ 1.4571 FPM ¹⁾ 1.4571 1.4310 1.4305 1.4305 1.4305 A2 1.4571	1.4571 ¹⁾ 1.4301 1.4571 1.4571 nhang: KWD-1 FPM ¹⁾ 1.4571 FPM ¹⁾ 1.4571 1.4310 1.4305 1.4305 1.4305 A2 1.4571	300 304 310 311 314 329* 347 350* 351* 352* 352* 362	1 Kolben 1 Vordruckkolben 1 Kolbenplatte 1 Distanzstück 1 Gegenmutter 1 O-Ring 1 Schraube 1 O-Ring 1 O-Ring 1 O-Ring 1 Verschlusskappe 1 Adapter	1.4571 1.4571 1.4571 1.4305 A4 FPM ¹⁾ A4 FPM ¹⁾ FPM ¹⁾ FPM ¹⁾ 1.4571	1.4571 1.4571 1.4571 1.4305 A4 FPM ¹⁾ A4 FPM ¹⁾ FPM ¹⁾ 1.4571

^{*} Ersatz- bzw. Verschleißteile

BG III + III B nur in Werkstoff-Ausführung 1.4571

¹⁾ andere Werkstoffe auf Anfrage

für Dämpfe, Gase und Flüssigkeiten, großer Regelbereich for steam, gases and liquids, expanded range of adjustment

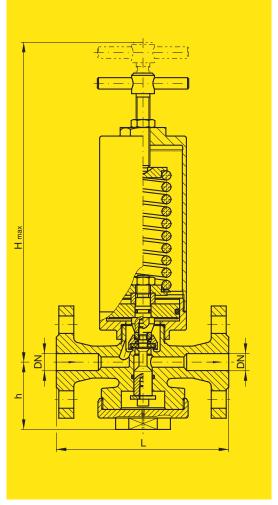
Typ 81

Typ 81.2: Wst. / Material 1.4301 Typ 81.2: Wst. / Material 1.4571

Industrie - Ausführung / Industry - design

Gegendruckunabhängig / Back pressure independent

Vordruckregler mit Schutzkappe auf Anfrage Valve with top cap


on request

Verwendung / Use

Betriebstemperatur / operating temperature

Kegel weich dichtend / disc soft seated

siehe techn. Anhang: KWD-1 / see techn. appendix: KWD-1

BG / Size 0

BG Size			Eintritt Inlet	Aus Ou	stritt tlet			maße nsions		Gewicht Weight
Size	D	N	Vordruckbereich** P1 initial pressure range** P1	D	DN					
	DIN	ANSI	minimal maximal	DIN	ANSI	L	H _{max}	H ₃	h	
	[mm]		[bar(g)]	[mm]		[mm]	[mm]	[mm]	[mm]	[kg]
0	10 15*	- 1/2*	0,35 / 62,0	10 15*	- 1/2*	130	272	267	59	2,6
1	15 20 25*	1/2 3/4 1*	0,35 / 60,0	15 20 25*	1/2 3/4 1*	130 150 160	282	262	67	6,2
II	25 32 40*	1 1¼ 1½*	0,25 / 47,0	25 32 40*	1 1¼ 1½*	160 180 200	288	268	75	8,0
III ¹⁾	40 50 65*	1½ 2 2½*	0,25 / 50,0	40 50 65*	1½ 2 2½*	200 230 290	335	315	90	14,2
III B ¹⁾	50 65 80	2 2½ 3	0,25 / 19,5	50 65 80	2 2½ 3	300 290 310	540	520	112	

¹⁾ Nur in Werkstoff-Ausführung 1.4571 / onlv material-design 1.4571

Typ 81

für Dämpfe, Gase und Flüssigkeiten, großer Regelbereich for steam, gases and liquids, expanded range of adjustment

Tabelle: Einstellbereiche des Vordruckes P1

Table: spring ranges for initial pressure P1

BG / Size	0	I	II	III	III B
Eintr./Austr.	DN 10, DN 15	DN 15, DN 20, DN 25	DN 25, DN 32, DN 40	DN 40, DN 50, DN 65	DN 50, DN 65, DN 80
Inlet/Outlet	3/8, 1/2	1/2, 3/4, 1	1, 11/4, 11/2	1½, 2, 2½	2, 21/2, 3
Kolbenplatte piston plate [mm]	5,6, 0,2		Einstellbereich spring range [bar(g)]	72, 2, 272	=1 =7.2, 0
					0,25 - 0,54
					0,45 - 0,90
Ø 119					0,70 - 1,37
					1,02 - 2,04
					1,65 - 3,30
				0.05	2,40 - 4,80
~ ~~				0,25 - 0,55	1,10 - 2,20
Ø 99				0,43 - 0,85	1,65 - 3,30
				0,68 - 1,35	2,65 - 5,30
				1,20 - 2,40	3,90 - 7,70
				1,40 - 2,70	
			0,25 - 0,55	0,41 - 0,82	2,70 - 5,40
			0,46 - 0,92	0,65 - 1,27	4,30 - 8,60
Ø 84			0,72 - 1,44	1,00 - 2,00	6,30 - 12,60
2 04			1,10 - 2,20	1,80 - 3,50	7,40 - 14,70
			1,60 - 3,10	2,00 - 4,00	9,80 - 19,50
			2,00 - 4,00	2,00	0,00
			_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	0,35 - 0,59	0,35 - 0,57	1,40 - 2,70	1,40 - 2,70	
	0,50 - 1,05	0,50 - 1,00	2,00 - 4,10	2,20 - 4,30	
Ø 64	0,90 - 1,72	0,80 - 1,60	2,90 - 5,80	3,70 - 7,40	
	1,40 - 2,70	1,30 - 2,60	3,70 - 7,40	4,30 - 8,50	
	2,10 - 4,18	2,00 - 4,00			
	3,00 - 6,00	2,90 - 5,70			
	2,50 - 5,00	2,40 - 4,80	2,80 - 5,60	4,10 - 8,20	
Ø 48	3,90 - 7,80	3,60 - 7,50	4,40 - 8,70	6,60 - 13,10	
	5,50 - 11,20	5,40 - 10,70	6,10 - 12,20	11,50 - 23,00	
	7,20 - 14,40	6,90 - 13,70	7,80 - 15,50	13,00 - 26,00	
				17,00 - 33,00	
		100 - 11		25,00 - 50,00	
	4,40 - 8,70	4,20 - 8,40	6,00 - 12,00		
G	6,80 - 13,50	6,50 - 13,00	10,00 - 18,50		
Ø 38	9,70 - 19,20	9,20 - 18,40	13,00 - 26,00		
	12,40 - 24,80	12,00 - 23,70	17,00 - 33,00		
			22,00 - 44,00		
	11 00 21 00	10.50 21.00	24,00 - 47,00		
	11,00 - 21,90 17,00 - 34,00	10,50 - 21,00 17,00 - 33,00			
Ø 27	24,00 - 48,00	23,00 - 46,00			
W 21	31,00 - 62,00	30,00 - 60,00			
	31,00 - 02,00	40,00 - 80,00 *			
		48.00 - 95.00 *			
		+0,00 - 90,00			

größere Vordruckbereiche auf Anfrage / expanded initial pressure range on request

* nur für DN 15 / only DN 15

für Dämpfe, Gase und Flüssigkeiten, großer Regelbereich for steam, gases and liquids, expanded range of adjustment

Typ 81

Massenstromtabelle für Sattdampf

zur Bestimmung der Größe von Vordruckreglern

Bau	ugröße	0		I	I	I	I	I	II	ΙB
Ner	nweite	10	15	20	25	32	40	50	50	65
1401	inweite	3/8	1/2	3/4	1	11/4	1½	2	2	2½
Überdru	ck p _ü [bar(g)]					kį	g/h			
	0,15	4	10	17	27	40	83	120	120	180
	0,2	5	11	19	31	46	99	145	145	210
	0,3	6	13	23	35	55	112	160	160	240
	0,5	7	16	28	46	70	140	200	200	300
	0,75	9	20	35	57	85	175	250	250	370
	1	11	25	42	68	100	210	300	300	450
	1,5	14	32	55	90	140	280	400	400	590
	2	17	40	70	115	170	350	520	520	750
O	2,5	21	47	84	135	200	400	600	600	880
00	3	24	55	99	155	240	480	700	700	1020
t _{max} 200 °C	4	31	70	123	195	300	600	890	890	1300
+	5	38	85	150	245	360	740	1080	1080	1600
	6	46	104	185	300	450	900	1340	1340	1950
	7	54	122	225	350	540	1100	1600	1600	2400
	8	62	140	250	400	600	1250	1800	1800	2700
	9	71	160	280	450	680	1380	2000	2000	2900
	10	80	180	320	500	750	1500	2300	2300	3300
	12	98	220	380	610	900	1850	2700	2700	4000
	14	115	260	450	720	1050	2300	3100	3100	4700

- a) Zur Bestimmung der Ventilgröße laut Tabelle ist der Vordruck maßgebend.
 Den Tabellenwerten liegen die üblichen Rohrleitungsgeschwindigkeiten zugrunde.
- b) Die unter a) ermittelte Ventilgröße kann um eine Nennweite kleiner gewählt werden, wenn beachtet wird, dass der Rohrleitungsdurchmesser am Ventilaustritt um mindestens eine Nennweite vergrößert wird.

Für kleine Druckverhältnisse gilt:

absoluter Vordruck p [bar]

absoluter Vordruck p [bar]

$$\stackrel{\geq}{absoluter Vordruck} p [bar]$$

$$\stackrel{\circ}{=} \stackrel{\circ}{m_D} = \stackrel{\circ}{m_D} \stackrel{\circ}{\circ} f$$

$$\stackrel{\geq}{=} 0.7 \Rightarrow \text{Korrekturfaktor} = 1,25$$

$$\stackrel{\geq}{=} 0.8 \Rightarrow \text{Korrekturfaktor} = 1,60$$

$$\stackrel{\circ}{=} 0.9 \Rightarrow \text{Korrekturfaktor} = 2,25$$

Der gefundene Korrekturfaktor muss auf Grund der geringeren Strömungsgeschwindigkeit mit dem vorgegebenen Massenstrom multipliziert werden. Mit Hilfe des errechneten Wertes kann nun ein Ventil gemäß Tabelle ermittelt werden.

Bei kleineren Druckverhältnissen als 0,7 wird kein Korrekturfaktor eingesetzt.

für Heißdampf gilt:

$$\dot{m}_{\rm D} = \frac{V_{\rm H}}{V_{\rm S}} \cdot \dot{m}_{\rm D}^1 \cdot f$$

Dichtungen für Dampf:

P1 < 4 [bar(g)] (<150°C): Kegeldichtung PTFE Dichtungsringe EPDM

P₁ < 15 [bar(g)] (<200°C): Kegeldichtung PTFE Dichtungsringe AF 100

 $P_1 > 15$ [bar(g)] (>200°C): auf Anfrage

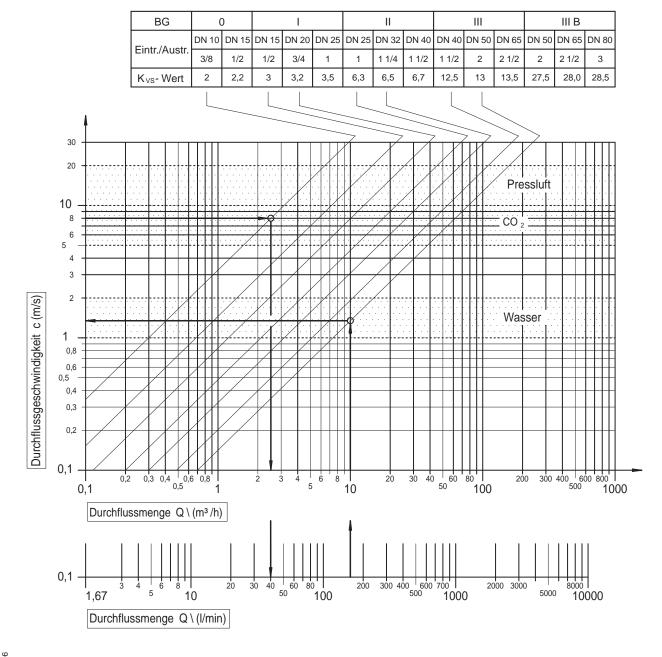
* V H: spez. Volumen des Heißdampfes

* V _S: spez. Volumen des Sattdampfes

f : Korrekturfaktor

 $\mathring{m}_{\rm D}^1$: gegebener Massenstrom

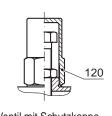
 $\dot{m}_{\rm D}$: sich ergebender Wert des Massenstromes mit dem die Tabelle genutzt werden kann

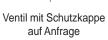

* siehe VDI-Wasserdampftafel

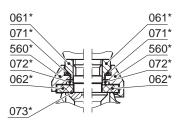
Typ 81

für Dämpfe, Gase und Flüssigkeiten, großer Regelbereich for steam, gases and liquids, expanded range of adjustment

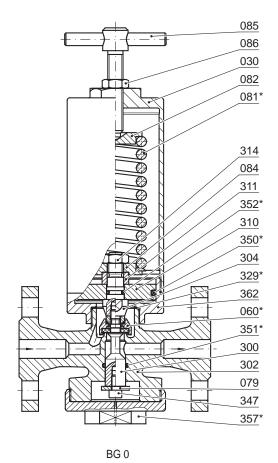
<u>Durchsatzdiagramm für Vordruckregler</u> (gasförmige Medien, Flüssigkeiten)


- a) Die entsprechende Ventilgröße ist mit Hilfe der üblichen Rohrleitungsgeschwindigkeiten des Mediums aus dem Diagramm zu ermitteln.
- b) Die unter a) gefundene Ventilgröße kann bei gasförmigen Medien um eine Nennweite kleiner gewählt werden, wenn beachtet wird, dass der Rohrleitungsdurchmesser am Ventilaustritt um mindestens eine Nennweite vergrößert wird.




Typ 81

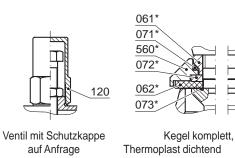
für Dämpfe, Gase und Flüssigkeiten, großer Regelbereich for steam, gases and liquids, expanded range of adjustment

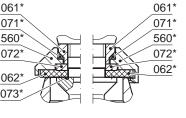

Typ 81.2: Wst. / Material 1.4301 Typ 81.2: Wst. / Material 1.4571 DN 10, 15

Kegel komplett, Pos. 060*
Thermoplast dichtend Elastomer dichtend

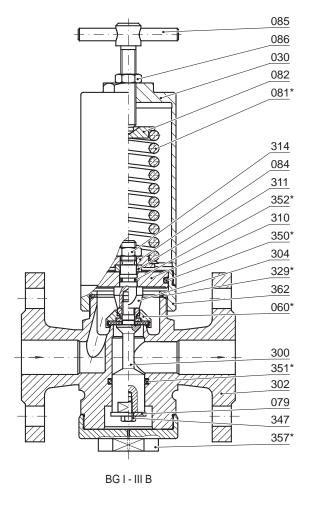
Pos.	Bezeichnung	Wer	kstoff	Pos.	Bezeichnung	Werk	stoff
302 030 060* 560* 061* 062* 071* 072* 073* 079 081* 082 084 085 086 120	1 VDR-Körper mit Flansch 1 Federhaube 1 Kegel komplett 1 Kegel, Rohling 1 Druckstück 1 Kegeldichtung 1 O-Ring 1 Klemmscheibe 1 O-Ring 1 Hubbegrenzung 1 Feder 1 Federteller, oben 1 Federteller, unten 1 Druckschraube 1 Gegenmutter 1 Kappe	1.4301 1.4301 1.4571 1.4571 siehe techn. A FPM ¹⁾ 1.4571 FPM ¹⁾ 1.4571 1.4310 1.4305 1.4305 1.4305 A2 1.4571	1.4571 1.4301 1.4571 1.4571 Inhang: KWD-1 FPM ¹⁾ 1.4571 1.4571 1.4310 1.4305 1.4305 1.4305 A2 1.4571	300 304 310 311 314 329* 347 350* 351* 352* 357 362	1 Kolben 1 Vordruckkolben 1 Kolbenplatte 1 Distanzstück 1 Gegenmutter 1 O-Ring 1 Schraube 1 O-Ring 1 O-Ring 1 O-Ring 1 Verschlusskappe 1 Adapter	1.4571 1.4571 1.4571 1.4305 A4 FPM 1) A4 FPM 1) FPM 1) FPM 1) 1.4571	1.4571 1.4571 1.4571 1.4305 A4 FPM ¹⁾ A4 FPM ¹⁾ FPM ¹⁾ 1.4571

^{*} Ersatz- bzw. Verschleißteile


¹⁾ andere Werkstoffe auf Anfrage



für Dämpfe, Gase und Flüssigkeiten, großer Regelbereich for steam, gases and liquids, expanded range of adjustment


Typ 81.2: Wst. / Material 1.4301 Typ 81.2: Wst. / Material 1.4571

DN 15, 20, 25, 32, 40, 50, 65, 80

Kegel komplett, Pos. 060* Elastomer dichtend

Pos.	Bezeichnung	Wer	kstoff	Pos.	Bezeichnung	Werk	stoff
302 030 060* 560* 061* 062* 071* 072* 073* 079 081* 082 084 085 086 120	1 VDR-Körper mit Flansch 1 Federhaube 1 Kegel komplett 1 Kegel, Rohling 1 Druckstück 1 Kegeldichtung 1 O-Ring 1 Klemmscheibe 1 O-Ring 1 Hubbegrenzung 1 Feder 1 Federteller, oben 1 Federteller, unten 1 Druckschraube 1 Gegenmutter 1 Kappe	1.4301 1.4301 1.4571 1.4571 siehe techn. A FPM ¹⁾ 1.4571 1.4571 1.4310 1.4305 1.4305 1.4305 A2 1.4571	1.4571 1.4301 1.4571 1.4571 Inhang: KWD-1 FPM ¹⁾ 1.4571 1.4571 1.4310 1.4305 1.4305 1.4305 A2 1.4571	300 304 310 311 314 329* 347 350* 351* 352* 357 362	1 Kolben 1 Vordruckkolben 1 Kolbenplatte 1 Distanzstück 1 Gegenmutter 1 O-Ring 1 Schraube 1 O-Ring 1 O-Ring 1 O-Ring 1 Verschlusskappe 1 Adapter	1.4571 1.4571 1.4571 1.4305 A4 FPM ¹⁾ A4 FPM ¹⁾ FPM ¹⁾ FPM ¹⁾ 1.4571	1.4571 1.4571 1.4571 1.4305 A4 FPM ¹⁾ A4 FPM ¹⁾ FPM ¹⁾ FPM ¹⁾ 1.4571

^{*} Ersatz- bzw. Verschleißteile

BG III + III B nur in Werkstoff-Ausführung 1.4571

¹⁾ andere Werkstoffe auf Anfrage

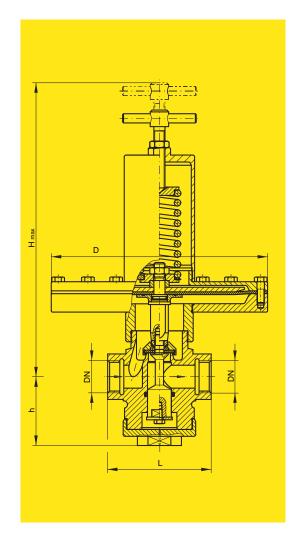
Typ 84

für Dämpfe, Gase und Flüssigkeiten, für sehr kleinen Minderdruck for steam, gases and liquids, for very low reduced pressure

Typ 84.2: Wst. / Material 1.4301 Typ 84.2: Wst. / Material 1.4571

Industrie - Ausführung / Industry - design

Gegendruckunabhängig / Back pressure independent


Vordruckregler mit Schutzkappe auf Anfrage Valve with top cap on request

Verwendung / Use

Betriebstemperatur / operating temperature

Kegel weich dichtend / disc soft seated

siehe techn. Anhang: KWD-1 / see techn. appendix: KWD-1

BG Size	Inlat			Austritt Baumaße Outlet Dimensions										Gewicht Weight	
Size		Vordruckbereich** P1 initial pressure range** P1					diaphi	oran- D agm- D							
	D	N	minimal	maximal		N		Ausführt I	ıng/Design I	l I	L	H _{max}	H ₃	h	
	[mm]	G ¹⁾	[ba	ar(g)]	[mm]	G ¹⁾	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[kg]
0	8 10 15*	1/4 3/8 1/2*	0,004	/ 0,98	8 10 15*	1/4 3/8 1/2*					70	270	265	59	9,8
1	15 20 25*	1/2 3/4 1*	0,004	/ 0,94	15 20 25*	1/2 3/4 1*					90 90 135	280	275	67	10,9 10,9 14,1
II	25 32 40*	1 1¼ 1½*	0,004	/ 0,90	25 32 40*	1 1¼ 1½*	405	310	235	190	105 105 155	300	295	75	12,7 12,7 16,0
III ²⁾	40 50 65*	1½ 2 2½*	0,004	/ 0,91	40 50 65*	1½ 2 2½*					145 145 210	340	335	90	18,8 18,8 22,1
III B ²⁾	50 65	2 2½	0,004	/ 0,46	50 65	2 2½					220 220	560	540	112	
III B		2½	0,004	7 0,40	65						220	560	540	112	

¹⁾ Gewindemuffe nach DIN ISO 228, andere auf Anfrage / female screw acc. to DIN ISO 228, other on request

Typ 84

für Dämpfe, Gase und Flüssigkeiten, für sehr kleinen Minderdruck for steam, gases and liquids, for very low reduced pressure

Tabelle: Einstellbereiche des Vordruckes P1

Table: spring ranges for initial pressure P1

Baugröße / Size	0	I	II	Ш	III B
Eintr./Austr.	DN 8, DN 10, DN 15	DN 15, DN 20, DN 25	DN 25, DN 32, DN 40	DN 40, DN 50, DN 65	DN 50, DN 65
Inlet/Outlet	1/4, 3/8, 1/2	1/2, 3/4, 1	1, 1¼, 1½	1½, 2, 2½	2, 21/2
Membran diaphragm [mm]			Einstellbereich spring range [bar(g)]		
	0,004 - 0,0078	0,004 - 0,0075	0,004 - 0,007	0,004 - 0,0065	0,004 - 0,007
	0,007 - 0,013	0,007 - 0,013	0,006 - 0,012	0,006 - 0,011	0,006 - 0,012
Ø 405	0,012 - 0,023	0,011 - 0,022	0,01 - 0,02	0,095 - 0,019	0,01 - 0,02
	0,02 - 0,04	0,019 - 0,038	0,018 - 0,035	0,017 - 0,033	0,018 - 0,036
	0,033 - 0,066	0,032 - 0,063	0,03 - 0,058	0,028 - 0,055	0,03 - 0,059
	0,05 - 0,1	0,050 - 0,099	0,046 - 0,091	0,043 - 0,086	0,046 - 0,092
	0,015 - 0,027	0,015 - 0,026	0,015 - 0,024	0,015 - 0,022	0,015 - 0,025
	0,025 - 0,046	0,023 - 0,044	0,021 - 0,041	0,019 - 0,038	0,021 - 0,042
Ø 310	0,04 - 0,08	0,039 - 0,077	0,036 - 0,072	0,034 - 0,068	0,037 - 0,074
	0,07 - 0,133	0,065 - 0,128	0,06 - 0,12	0,056 - 0,112	0,061 - 0,122
	0,11 - 0,21	0,1 - 0,2	0,093 - 0,185	0,088 - 0,175	0,096 - 0,191
	0,05 - 0,06	0,05 - 0,058	0,05 - 0,094	0,045 - 0,09	0,05 - 0,102
	0,05 - 0,1	0,05 - 0,1	0,083 - 0,165	0,08 - 0,16	0,091 - 0,181
Ø 235	0,09 - 0,18	0,088 - 0,176	0,137 - 0,273	0,132 - 0,264	0,15 - 0,3
	0,15 - 0,30	0,146 - 0,291	0,213 - 0,426	0,206 - 0,411	0,233 - 0,465
	0,24 - 0,47	0,227 - 0,454			
	0,11 - 0,22	0,1 - 0,21	0,1 - 0,2	0,1 - 0,2	
	0,19 - 0,38	0,19 - 0,37	0,18 - 0,35	0,18 - 0,35	
Ø 190	0,32 - 0,63	0,3 - 0,6	0,28 - 0,58	0,29 - 0,58	
	0,5 - 0,98	0,48 - 0,94	0,45 - 0,9	0,46 - 0,91	

größere Vordruckbereiche auf Anfrage $\,/\,\,$ expanded initial pressure range on request

тур

für Dämpfe, Gase und Flüssigkeiten, für sehr kleinen Minderdruck for steam, gases and liquids, for very low reduced pressure

Massenstromtabelle

für Sattdampf

zur Bestimmung der Größe von Vordruckreglern

Baugröße		0		I	II		II	I	III B				
Über- Nennweite		10	15	20	25	32	40	50	50	65			
druck p _ü [k	par(g)]	3/8	1/2	3/4	1	1¼	1½	2	2	2½			
		kg/h											
	0,15	4	10	17	27	40	83	120	120	180			
	0,2	5	11	19	31	46	99	145	145	210			
	0,3	6	13	23	35	55	112	160	160	240			
	0,5	7	16	28	46	70	140	200	200	300			
	0,75	9	20	35	57	85	175	250	250	370			
t _{max} 200 °C	1	11	25	42	68	100	210	300	300	450			
20(1,5	14	32	55	90	140	280	400	400	590			
max	2	17	40	70	115	170	350	520	520	750			
+	2,5	21	47	84	135	200	400	600	600	880			
	3	24	55	99	155	240	480	700	700	1020			
	4	31	70	123	195	300	600	890	890	1300			
	5	38	85	150	245	360	740	1080	1080	1600			
	6	46	104	185	300	450	900	1340	1340	1950			
	7	54	122	225	350	540	1100	1600	1600	2400			
	8	62	140	250	400	600	1250	1800	1800	2700			

- a) Zur Bestimmung der Ventilgröße laut Tabelle ist der Vordruck maßgebend.
 Den Tabellenwerten liegen die üblichen Rohrleitungsgeschwindigkeiten zugrunde.
- b) Die unter a) ermittelte Ventilgröße kann um eine Nennweite kleiner gewählt werden, wenn beachtet wird, dass der Rohrleitungsdurchmesser am Ventilaustritt um mindestens eine Nennweite vergrößert wird.

Für kleine Druckverhältnisse gilt:

absoluter Vordruck p [bar]
absoluter Vordruck p [bar]
$$\stackrel{?}{absoluter Vordruck} p [bar]$$

$$\stackrel{?}{m_D} = \stackrel{?}{m_D} \stackrel{?}{\circ} f$$

$$\geq 0,7 \Rightarrow \text{Korrekturfaktor} = 1,25$$

$$\geq 0,8 \Rightarrow \text{Korrekturfaktor} = 1,60$$

$$\geq 0,9 \Rightarrow \text{Korrekturfaktor} = 2,25$$

Der gefundene Korrekturfaktor muss auf Grund der geringeren Strömungsgeschwindigkeit mit dem vorgegebenen Massenstrom multipliziert werden. Mit Hilfe des errechneten Wertes kann nun ein Ventil gemäß Tabelle ermittelt werden.

Bei kleineren Druckverhältnissen als 0,7 wird kein Korrekturfaktor eingesetzt.

für Heißdampf gilt:

$$\dot{m}_{\rm D} = \frac{V_{\rm H}}{V_{\rm S}} \cdot \dot{m}_{\rm D}^1 \cdot f$$

Dichtungen für Dampf:

P₁ < 4 [bar(g)] (<150°C): Kegeldichtung PTFE Dichtungsringe EPDM

P₁ < 15 [bar(g)] (<200°C): Kegeldichtung PTFE Dichtungsringe AF 100

* V H: spez. Volumen des Heißdampfes

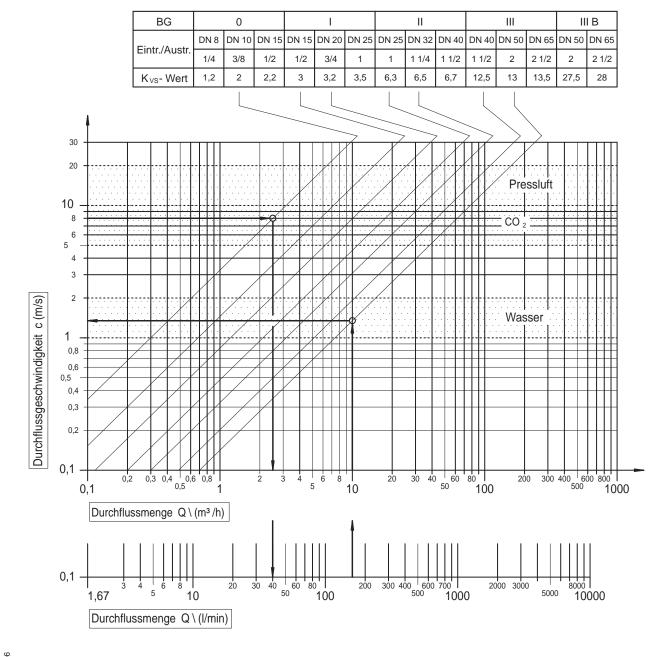
* V _S: spez. Volumen des Sattdampfes

f : Korrekturfaktor

 $\mathring{m}_{\rm D}^1$: gegebener Massenstrom

 $\dot{m}_{\rm D}$: sich ergebender Wert des Massenstromes mit dem die Tabelle genutzt werden kann

* siehe VDI-Wasserdampftafel

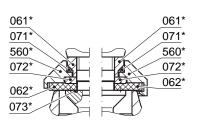

distributed by
ROBINEX AG SA

Typ 84

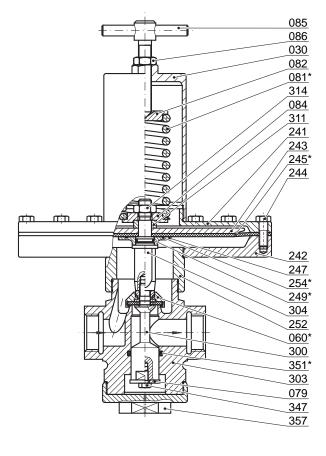
für Dämpfe, Gase und Flüssigkeiten, für sehr kleinen Minderdruck for steam, gases and liquids, for very low reduced pressure

Durchsatzdiagramm für Vordruckregler (gasförmige Medien, Flüssigkeiten)

- a) Die entsprechende Ventilgröße ist mit Hilfe der üblichen Rohrleitungsgeschwindigkeiten des Mediums aus dem Diagramm zu ermitteln.
- b) Die unter a) gefundene Ventilgröße kann bei gasförmigen Medien um eine Nennweite kleiner gewählt werden, wenn beachtet wird, dass der Rohrleitungsdurchmesser am Ventilaustritt um mindestens eine Nennweite vergrößert wird.



Typ 84


für Dämpfe, Gase und Flüssigkeiten, für sehr kleinen Minderdruck for steam, gases and liquids, for very low reduced pressure

Typ 84.2: Wst. / Material 1.4301 Typ 84.2: Wst. / Material 1.4571 G 1/4, 3/8, 1/2, 3/4, 1, 11/4, 11/2, 2, 21/2

Kegel komplett, Pos. 060*
Thermoplast dichtend Elastomer dichtend

Pos.	Bezeichnung	Werkstoff		Pos.	Bezeichnung	Werkstoff	
303 030 060* 560* 061* 062* 071* 072* 073* 079 081* 082 084 085 086 120 241 242	1 VDR-Körper mit Gewinde 1 Federhaube 1 Kegel komplett 1 Kegel, Rohling 1 Druckstück 1 Kegeldichtung 1 O-Ring 1 Klemmscheibe 1 O-Ring 1 Hubbegrenzung 1 Feder 1 Federteller, oben 1 Federteller, unten 1 Druckschraube 1 Gegenmutter 1 Kappe 1 obere Aufnahme 1 untere Aufnahme	1.4301 1.4301 1.4571 1.4571 siehe techn. Ar FPM ¹⁾ 1.4571 FPM ¹⁾ 1.4571 1.4305 1.4305 1.4305 A2 1.4571 1.4571	1.4571 1.4301 1.4571 1.4571 shang: KWD-1 FPM 1) 1.4571 FPM 1) 1.4571 1.4310 1.4305 1.4305 1.4305 1.4305 1.4305 1.4305 1.4305 1.4571	243 244 245* 247 249* 252 254* 300 304 311 314 347 351* 357	1 Klemmplatte, oben 16 Schrauben 1 Membran 1 Klemmplatte, unten 1 O-Ring 1 Adapter 1 O-Ring 1 Kolben 1 Vordruckkolben 1 Distanzstück 1 Gegenmutter 1 Schraube 1 O-Ring 1 Verschlusskappe	1.4571 A2 EPDM 1.4571 FPM ¹⁾ 1.4571 1.4571 1.4571 1.4305 A2 A4 FPM ¹⁾	1.4571 A2 EPDM 1.4571 FPM ¹⁾ 1.4571 1.4571 1.4404 1.4305 A2 A4 FPM ¹⁾

^{*} Ersatz- bzw. Verschleißteile

BG III + III B nur in Werkstoff-Ausführung 1.4571

¹⁾ andere Werkstoffe auf Anfrage

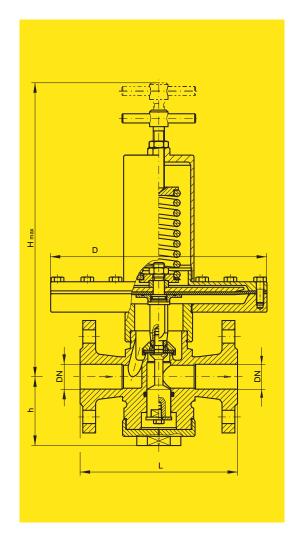
Typ 85

für Dämpfe, Gase und Flüssigkeiten, für sehr kleinen Minderdruck for steam, gases and liquids, for very low reduced pressure

Typ 85.2: Wst. / Material 1.4301 Typ 85.2: Wst. / Material 1.4571

Industrie - Ausführung / Industry - design

Gegendruckunabhängig / Back pressure independent


Vordruckregler mit Schutzkappe auf Anfrage Valve with top cap on request

Verwendung / Use

Betriebstemperatur / operating temperature

Kegel weich dichtend / disc soft seated

siehe techn. Anhang: KWD-1 / see techn. appendix: KWD-1

e Eintritt Inlet Vordruckbereich** P1 initial pressure range** P1				Austritt Baumaße Outlet Dimensions								Gewicht Weight			
			DN diaphragm- D												
DIN	ANSI	minimal		maximal	DIN	ANSI		Austuntur	ng/Design		L	H _{max}	H ₃	h	
[mm]		[t	oar(g)]	[mm]		[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[kg]
10 15*	- 1/2*	0,004	/	0,98	10 15*	- 1/2*					130	270	265	59	11,3
15 20	1/2 3/4	0,004	/	0,94	15 20	1/2 3/4					130 150	280	275	67	12,7 14,9
25 32	1 1¼	0,004	/	0,90	25 32	1 1¼	405	310	235	190	160 180	300	295	75	14,6 17,8
40 50	1½ 2	0,004	/	0,91	40 50	1½ 2					200 230	340	335	90	22,3 25,5
50 65 80	2 2½ 3	0,004	/	0,46	50 65 80	2 2½ 3					300 290 310	560	540	112	
	DIN [mm] 10 15* 15 20 25 32 1) 40 50 65	DN ANSI [mm] 10 - 1/2* 15 1/2 20 3/4 25 1 32 11/4 10 40 11/2 50 2 10 65 21/2	N Nordructinitial press Nordructinitial press	Inlet Vordruckbere Initial pressure r Initi	Inlet Vordruckbereich** P1 initial pressure range** P2 P3	Inlet	N	N	Inlet Outlet	N	Nordruckbereich** Pi	DN	Normal N	Time Time	Normal N

für Dämpfe, Gase und Flüssigkeiten, für sehr kleinen Minderdruck for steam, gases and liquids, for very low reduced pressure

Typ 85

Tabelle: Einstellbereiche des Vordruckes P1
Table: spring ranges for initial pressure P1

Baugröße / Size	0	1	II	Ш	III B
Eintr./Austr.	DN 10, DN 15	DN 15, DN 20	DN 25, DN 32	DN 40, DN 50	DN 65, DN 80
Inlet/Outlet	3/8, 1/2	1/2, 3/4	1, 1¼	1½, 2	21/2, 3
Membran diaphragm [mm]			Einstellbereich spring range [bar(g)]		
	0,004 - 0,0078	0,004 - 0,0075	0,004 - 0,007	0,004 - 0,0065	0,004 - 0,007
	0,007 - 0,013	0,007 - 0,013	0,006 - 0,012	0,006 - 0,011	0,006 - 0,012
Ø 405	0,012 - 0,023	0,011 - 0,022	0,01 - 0,02	0,095 - 0,019	0,01 - 0,02
	0,02 - 0,04	0,019 - 0,038	0,018 - 0,035	0,017 - 0,033	0,018 - 0,036
	0,033 - 0,066	0,032 - 0,063	0,03 - 0,058	0,028 - 0,055	0,03 - 0,059
	0,05 - 0,1	0,050 - 0,099	0,046 - 0,091	0,043 - 0,086	0,046 - 0,092
	0,015 - 0,027	0,015 - 0,026	0,015 - 0,024	0,015 - 0,022	0,015 - 0,025
	0,025 - 0,046	0,023 - 0,044	0,021 - 0,041	0,019 - 0,038	0,021 - 0,042
Ø 310	0,04 - 0,08	0,039 - 0,077	0,036 - 0,072	0,034 - 0,068	0,037 - 0,074
	0,07 - 0,133	0,065 - 0,128	0,06 - 0,12	0,056 - 0,112	0,061 - 0,122
	0,11 - 0,21	0,1 - 0,2	0,093 - 0,185	0,088 - 0,175	0,096 - 0,191
	0,05 - 0,06	0,05 - 0,058	0,05 - 0,094	0,045 - 0,09	0,05 - 0,102
	0,05 - 0,1	0,05 - 0,1	0,083 - 0,165	0,08 - 0,16	0,091 - 0,181
Ø 235	0,09 - 0,18	0,088 - 0,176	0,137 - 0,273	0,132 - 0,264	0,15 - 0,3
	0,15 - 0,30	0,146 - 0,291	0,213 - 0,426	0,206 - 0,411	0,233 - 0,465
	0,24 - 0,47	0,227 - 0,454			
	0,11 - 0,22	0,1 - 0,21	0,1 - 0,2	0,1 - 0,2	
	0,19 - 0,38	0,19 - 0,37	0,18 - 0,35	0,18 - 0,35	
Ø 190	0,32 - 0,63	0,3 - 0,6	0,28 - 0,58	0,29 - 0,58	
	0,5 - 0,98	0,48 - 0,94	0,45 - 0,9	0,46 - 0,91	

 ${\tt gr\"oßere\ Vordruckbereiche\ auf\ Anfrage\ /\ expanded\ initial\ pressure\ range\ on\ request}$

für Dämpfe, Gase und Flüssigkeiten, für sehr kleinen Minderdruck for steam, gases and liquids, for very low reduced pressure

Typ 85

Massenstromtabelle

für Sattdampf

zur Bestimmung der Größe von Vordruckreglern

Bau	ugröße	0		I	I	I	- 1	II	III B				
Über-	Über- Nennweite		15	20	25	32	40	50	65	80			
druck p [k	par(g)]	3/8	1/2	3/4	1	1¼	1½	2	2½	3			
		kg/h											
	0,15	4	10	17	27	40	83	120	180	260			
	0,2	5	11	19	31	46	99	145	210	310			
	0,3	6	13	23	35	55	112	160	240	360			
	0,5	7	16	28	46	70	140	200	300	440			
	0,75	9	20	35	57	85	175	250	370	560			
t _{max} 200 °C	1	11	25	42	68	100	210	300	450	680			
20	1,5	14	32	55	90	140	280	400	590	880			
max	2	17	40	70	115	170	350	520	750	1120			
ţ	2,5	21	47	84	135	200	400	600	880	1310			
	3	24	55	99	155	240	480	700	1020	1540			
	4	31	70	123	195	300	600	890	1300	1900			
	5	38	85	150	245	360	740	1080	1600	2400			
	6	46	104	185	300	450	900	1340	1950	2900			
	7	54	122	225	350	540	1100	1600	2400	3400			
	8	62	140	250	400	600	1250	1800	2700	4000			

- a) Zur Bestimmung der Ventilgröße laut Tabelle ist der Vordruck maßgebend.
 Den Tabellenwerten liegen die üblichen Rohrleitungsgeschwindigkeiten zugrunde.
- b) Die unter a) ermittelte Ventilgröße kann um eine Nennweite kleiner gewählt werden, wenn beachtet wird, dass der Rohrleitungsdurchmesser am Ventilaustritt um mindestens eine Nennweite vergrößert wird.

Für kleine Druckverhältnisse gilt:

absoluter Vordruck p [bar]
absoluter Vordruck p [bar]
$$\stackrel{?}{absoluter Vordruck} p [bar]$$

$$\stackrel{?}{m_D} = \stackrel{?}{m_D} \stackrel{?}{\circ} f$$

$$\geq 0,7 \Rightarrow \text{Korrekturfaktor} = 1,25$$

$$\geq 0,8 \Rightarrow \text{Korrekturfaktor} = 1,60$$

$$\geq 0,9 \Rightarrow \text{Korrekturfaktor} = 2,25$$

Der gefundene Korrekturfaktor muss auf Grund der geringeren Strömungsgeschwindigkeit mit dem vorgegebenen Massenstrom multipliziert werden. Mit Hilfe des errechneten Wertes kann nun ein Ventil gemäß Tabelle ermittelt werden.

Bei kleineren Druckverhältnissen als 0,7 wird kein Korrekturfaktor eingesetzt.

für Heißdampf gilt:

$$\dot{m}_{\rm D} = \frac{V_{\rm H}}{V_{\rm S}} \cdot \dot{m}_{\rm D}^1 \cdot f$$

Dichtungen für Dampf:

 $P_1 < 4 [bar(g)] (<150^{\circ}C)$: Kegeldichtung PTFE Dichtungsringe EPDM

P₁ < 15 [bar(g)] (<200°C): Kegeldichtung PTFE Dichtungsringe AF 100

* V H: spez. Volumen des Heißdampfes

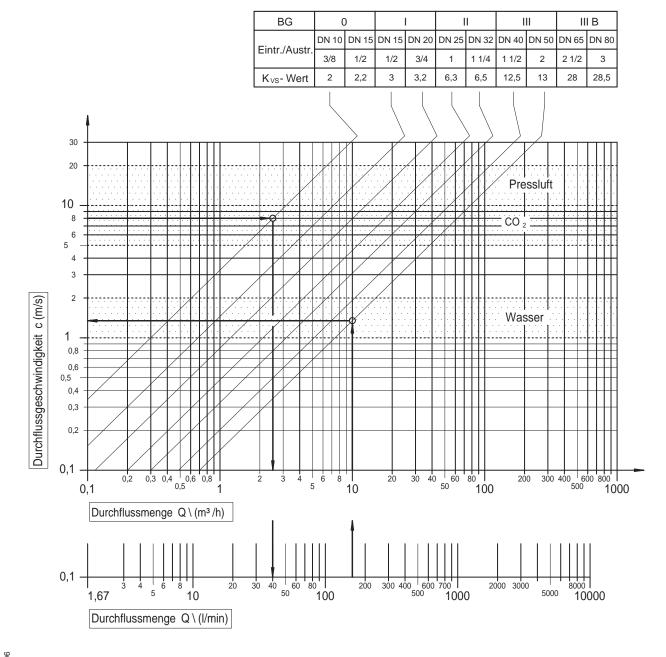
* V _S: spez. Volumen des Sattdampfes

f : Korrekturfaktor

 $\mathring{m}_{\rm D}^1$: gegebener Massenstrom

 $\dot{m}_{\rm D}$: sich ergebender Wert des Massenstromes mit dem die Tabelle genutzt werden kann

* siehe VDI-Wasserdampftafel

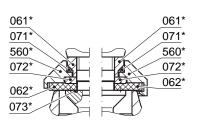

distributed by ROBINEX AG SA

Typ 85

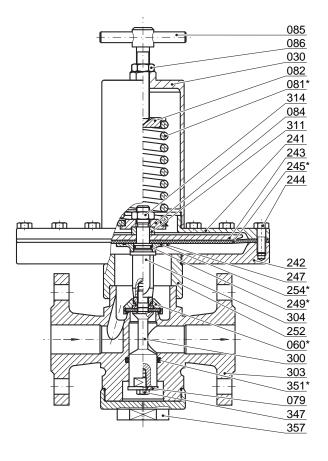
für Dämpfe, Gase und Flüssigkeiten, für sehr kleinen Minderdruck for steam, gases and liquids, for very low reduced pressure

Durchsatzdiagramm für Vordruckregler (gasförmige Medien, Flüssigkeiten)

- a) Die entsprechende Ventilgröße ist mit Hilfe der üblichen Rohrleitungsgeschwindigkeiten des Mediums aus dem Diagramm zu ermitteln.
- b) Die unter a) gefundene Ventilgröße kann bei gasförmigen Medien um eine Nennweite kleiner gewählt werden, wenn beachtet wird, dass der Rohrleitungsdurchmesser am Ventilaustritt um mindestens eine Nennweite vergrößert wird.



Typ 85


für Dämpfe, Gase und Flüssigkeiten, für sehr kleinen Minderdruck for steam, gases and liquids, for very low reduced pressure

Typ 85.2: Wst. / Material 1.4301 Typ 85.2: Wst. / Material 1.4571 DN 10, 15, 20, 25, 32, 40, 50, 65, 80

Kegel komplett, Pos. 060* Thermoplast dichtend Elastomer dichtend

Pos.	Bezeichnung	Werk	stoff	Pos.	Bezeichnung	Werkstoff	
303 030 060* 560* 061* 062* 071* 072* 073* 079 081* 082 084 085 086 120 241 242	1 VDR-Körper mit Flansch 1 Federhaube 1 Kegel komplett 1 Kegel, Rohling 1 Druckstück 1 Kegeldichtung 1 O-Ring 1 Klemmscheibe 1 O-Ring 1 Hubbegrenzung 1 Feder 1 Federteller, oben 1 Federteller, unten 1 Druckschraube 1 Gegenmutter 1 Kappe 1 obere Aufnahme 1 untere Aufnahme	1.4301 1.4301 1.4571 1.4571 siehe techn. Ar FPM ¹⁾ 1.4571 FPM ¹⁾ 1.4571 1.4305 1.4305 1.4305 A2 1.4571 1.4571	1.4571 1.4301 1.4571 1.4571 1.4571 FPM ¹⁾ 1.4571 1.4571 1.4305 1.4305 1.4305 A2 1.4571 1.4571	243 244 245* 247 249* 252 254* 300 304 311 314 347 351* 357	1 Klemmplatte, oben 16 Schrauben 1 Membran 1 Klemmplatte, unten 1 O-Ring 1 Adapter 1 O-Ring 1 Kolben 1 Vordruckkolben 1 Distanzstück 1 Gegenmutter 1 Schraube 1 O-Ring 1 Verschlusskappe	1.4571 A2 EPDM 1.4571 FPM ¹⁾ 1.4571 1.4571 1.4571 1.4305 A2 A4 FPM ¹⁾ 1.4571	1.4571 A2 EPDM 1.4571 FPM ¹⁾ 1.4571 1.4471 1.4404 1.4305 A2 A4 FPM ¹⁾ 1.4571

^{*} Ersatz- bzw. Verschleißteile

BG III + III B nur in Werkstoff-Ausführung 1.4571

¹⁾ andere Werkstoffe auf Anfrage